Exploiting Symmetry in Tensors for High Performance: Multiplication with Symmetric Tensors

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploiting Symmetry in Tensors for High Performance: Multiplication with Symmetric Tensors

Symmetric tensor operations arise in a wide variety of computations. However, the benefits of exploiting symmetry in order to reduce storage and computation is in conflict with a desire to simplify memory access patterns. In this paper, we propose Blocked Compact Symmetric Storage wherein we consider the tensor by blocks and store only the unique blocks of a symmetric tensor. We propose an algo...

متن کامل

Exploiting Symmetry in Tensors for High Performance

Symmetric tensor operations arise in a wide variety of computations. However, the benefits of exploiting symmetry in order to reduce storage and computation is in conflict with a desire to simplify memory access patterns. In this paper, we propose Blocked Compact Symmetric Storage wherein we consider the tensor by blocks and store only the unique blocks of a symmetric tensor. We propose an algo...

متن کامل

Exploiting Symmetry in Tensors for High Performance: An Initial Study

Symmetric tensor operations arise in a wide variety of computations. However, the benefits of exploiting symmetry in order to reduce storage and computation is in conflict with a desire to simplify memory access patterns. In this paper, we propose Blocked Compact Symmetric Storage wherein we consider the tensor by blocks and store only the unique blocks of a symmetric tensor. We propose an algo...

متن کامل

Symmetric nonnegative tensors and copositive tensors

Article history: Received 6 December 2012 Accepted 11 March 2013 Available online 8 April 2013 Submitted by R.A. Brualdi AMS classification: 15A18 15A69

متن کامل

Computing symmetric rank for symmetric tensors

We consider the problem of determining the symmetric tensor rank for symmetric tensors with an algebraic geometry approach. We give algorithms for computing the symmetric rank for 2 × · · · × 2 tensors and for tensors of small border rank. From a geometric point of view, we describe the symmetric rank strata for some secant varieties of Veronese varieties.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Scientific Computing

سال: 2014

ISSN: 1064-8275,1095-7197

DOI: 10.1137/130907215